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Preface

This study began with an attempt to explain, theoretically, or
experimentally, how the increased rate of convergence was achieved
for two methods of iteration previously developed at the Air Force
Institute of Technology. Analysis of the simpler method applied to
point successive overrelaxation was attempted first. Difficulties in
applying the theory to the method arl achieving the reported increase
in convergence rates in actual test runs, were immediately encountered.
The length of time needed to finally resolve these difficulties pre-
cluded analysis of the other method, which was applied to block
successive overrelaxation.

Approximately five hours of computer time on an IKI 7094 com-
puter wers used in testing and comparing various scanning techniques
with the method previously developed. The msthod of point successive
overrelaxation wes applied to the five point finite difference approx-
jmations to Leplace’s equation and the transient heat transfer
equation.

Two scarming methods, which I have elected to call the standard
scan and fho even~odd acan, were programed along with the method
previousiy developed. It was found that the stamdard and even-odd
scans were iteratively faster as the numher of required iterations
was increased. Both of these scans are "consistent! and therefore
qualify for the maximum ssymptotic rate of convergence amongst the
group of all possible scans. I have attempted in chapter II to ex-
plain explicitly how one determines when a given scan is consistent.
The method is due to Varga and can be easily apriied once it is understood.
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Abstract

This study investigates the offect of ordering of finite differ-
ence equations on the average rate of convergence of the point success-
ive overrelaxation iterative method. The method is applied to the two
dimensional five point implicit finite difference rspresentation of
Laplace's equation and the diffusion equation of transisnt heat
transfer.

The average rate of convergence for a specified number of itera-
tions is found to depend onm the magnitude of the projection of the
initis]l error vector onto the dominant eigemvector of the point suc~
cessive overrelaxation iteration matrix, Although the asymptotic rate
of convergence has been proven to be the same, and optimum, for all
consistent orderings, the average rate of convergence for a specific
number of iterations is shown to be different for two consistent
orderings. For a reduction in ths initial error vector by three
orders of magnitude, a difference of 20% in average convergence rates
is achieved. An increase in the orders of magnitude reduction pro-

duces a proportionate decrease in the per cent difference between the

two consistent scans.

vii
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1. Introduction

With the growth in speed and complexity of modern high spesd
digital computers has come an increase in interest in finding or
approximating the solution to partial differental equations in several
variables by use of these machines. It is naturally desirable to find
a method which will yield a solution to the matrix problems arising
from discrete approximations to partial differential equations in the
mimimum time on the computer. This will allow more and/or larger
problems to be solved with the required accuracy.

From the early work of Young (Ref 7) and Frankel (Ref 4) in 1950,
the method of point successive overrelaxation (to use Young's nomenclature)
has been expanded to cover a wide range of matrix equations through the
concept of p-cyclic matrices treated by Varga (Ref 6). This theory
also applies to the newer method of block successive overrelaxation.
The mathematical theory, although it does provide a good general frame-~
worl: and bagie for diresticn in researeh, is not sufficiently soxpleta
to determine tne optimum method.

For large problems the mest succsssful techniqus to date swploys
the use of an ilaplicdt spproaximaticrn to the differwiiial asguatlion
whevein tne correereonciny Aifforence espuitions or> zolved rovaelslly
uantil two succwessive itsrations yleld solulions which diffar oniy by
a small predetermined amount. The discrete wvalues so obtained are
then *.kan as ths zslutien of the differeniial equation &t the
raspaetive points. Various methods have beean developed which use

this general approach.
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Previous work at the Air Force Institute of Technology by Cudahy
(1965) (Ref 2) with point successive overrelaxation and Wright (1967)
(Ref 10) with block successive overrelaxation showed, by an essentially
empirical approach, that the ordering of mes“ points, or blocks of
mesh points, for solution of the difference eyu.ations can have a

significant effect on the rate of convergence of the iterative method.

Durpose
The objective of the present study was to investigate the effect

of ordering, or method of mesh point scanning, on the average and
asymptotic rates of convergence of the point successive overrelaxation
iterative method, and to account for the differences in experimentally

observed rates of convergence for different scanning methods.

Method

The point successive overrelaxation ite ive method was applied
to the five point finite difference spproximations to Laplace's equa-
tion and the heat equation. The equations were applied over a square
rogion in two dimensions so that the optimum relaxation factor could
be piedicted theoretically for Laplace's equation, and so that the pre-
ssot deba conid We correlaied with the previcus work of Cudahy (Hef 2)
Zfor the heai equation. The ability to predict the optimum r~laration
Tactor grsatly reduces the compui r tims necessary tc obtain Lhe desired
data. For the heat equation solutions were obtained with several
relaxatior factors f»or each tiw= step. The optimum relax=%*ion factor
is <ifferent for sach time step.

The even~odd scan (denoted odd-even parity by Forsythe and Wasow)

(Ref 3:200) and the method developed by Cudahy (Ref 2:34) were compared
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with the standard scan used by Young (Ref 8). The results of those
comparisons are vresented in chapter I1l. Chapter IV contains a dis-
cussion of the results of this study in terms of the thecry presert

in chapter II.
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1I, Theory

Point Successive Overrelaxation

To derive the point successive overralaxation iterative method

consider a system of linear equations

n
Z‘w*r&- 1€1%n (1)
J=t

where the ay,4 are elements of the n x i complex matrix A. This can

be written in natrix notation as
Ax=k (2)

where k is a given column vector. The solution to this equation exists
and is unique if and only if the mataix A is nonsingular (Ref 6:56).
The solution vector can then be written explicitly as

At x £3)

The diagcnal elements ag 4 of & are now assumed to be nonzero complex

numbers-
The matrix A ~an Le Xprossed n=

4=D-5-F ()

where D is a strictiy diagonal matrix, E is a striclly lower triangular
matrix, and F is a striotly upper triangular matrix. With this

splitting of the matrix A, equation (2) can be written
(D-E)x=Fx+%k (5)

4
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Multiplying both sides of the equation by a quantity (), called the

relaxation factor, gives
(WD-WE)x= WFx+Wk (6)
Adding the matrix product D X to both sides and rearranging terms gives
@-wR)x= [1-w) D+ WE] X+ wE )
This equation suggests the following iterative method:
@-wp T = [ -w)p+ wE] T + WE n2o ®

where the components of ;(0) are the lnitial estimates of the unique
solution of X of equation (2). As D -(WE is nensinguler for any
choice of (), and with the definitions L = D™IE and U = D"'F, equation
(8) can be written

) - g -wp [ -wiz e w ] (=)
+ w@-wlplt (9)

Thia iterative method is valled ths point successive overrelsexation
iterative methcd and will be denoted the S.0.R. iterative method. The

metrix
. -1 .
L, =@-on [a-w)z+ W] (10)

is called the iteration matrix of the S.0.R. 1terative method.

Spectral Radius. The magnitude of the largest of the eigenvalues
of the iteration matrix L, is termed the spectral radius. The
eigenvector assoclated with this eigenvalue will be called the dominant
eigenvector of the iteration matrix. Varga (Ref 6:13) has shown that
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the S.0.R. iterative method is convergent if and only if the spectral

redius
p(L,) <1 (11)

This condition is assured provided (a) that the matrix (D -~ (W E) is
nonsingular and its inverse is non-negative, and (b) that the matrix
[(1 -W)D +Ww _F_‘] is non-negative (Ref 6:89).

Error Vectors. The error vectors E(m) associated with the S.0.R.

iterative method are defined by

é-(m)

@ _ x, m®0 (12)

where X is the unique vector solution of equation (2). By equation

(9) the error vectors can be expressed as
D T N Y (19)

Aszuming that the eigenvectors of l_,w form a complete set, the initial

error vector E(o) can be expressed in termms of them as

g(a; = .1.:1'+ 8-2;2 +, ., 0 * %‘;n (12’)

where the slgenvectors -«9'1. ®2; + o oo ;n are sssumsd to be normalised.

The 41y 82+ ¢« o oy 8y reprosont the magnitudes of the components of the
initis) ervcr vector. Multiplying squation (14} by l-"(d yields

-é(i) = ]___,w-é(o) a4 szl + L:wSZ b P ‘nl_fw:n (15}

which by the eigenvalue egquation L :i = )\ ,_3’1 reduces to

W
.€-(1)=al)\1:1 +ag)\g:2+...+an)\n:n (16)
6
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where )\ 1 )\2. s o o o )\n are the eigenvalues of Lw. Continuing
in this fashion the error vector st each lteration is given by
SN S-S ¥ S AR TN +a N2 s,

SO AN N A TR . (17)

Assuming that the eigenvalues are ordered by magnitude such that

P I P NS ERREE P (18)

then

AT] > D= s AT (19)

For sufficiently large m, |)\Tl>>|>\"2" and

g . a AT oy (Ref 1:115) (20)

By definition Lhe spectral radius p { Lw) is erual to the magnitude
of the largest eigenvalue >\1 of ]_._,w, thus it can be sesn that the
error vector will vanish as m —= oo if and only if P(Lw) < 1.
For aufficiently large m ths magnitude of the error vector af sach
iteration is primarily a funstion of the spsctrsl rsdiuvs and the
guaniity ay defined by equation {14). FEoth of these quantities are
determined by the cholce of the iterstion matrix L., which in turn
is determined by the cholce of the relaxation factor &) and the order
in which the equations (i) ars solved. A particular ordering has been
implied in this development by the splitting of matrix A in equation
(4). This ordering is termed the natural or stendard ordering.
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Rate of Convergence. There is some disagreement in the literature

concerning the definition of rate of convergence. Young, in 1950, de-
fined the rate of convergence as ~ ln P ( l—-'w ) (Ref 7:94). Varga,
however, has chosen to call this the asymptotlc rate of convergence
since it is realized only as m —-» o) - Varga then defines the aver-

age rate of convergence as
R@™) = - 1n [ C||anjjorm ] (21)

for m iterations, where “AH denotes the spactral norm of A (Ref 6:62).
1f two iterstion matrices, A and B, have different average rates of cen-
vergence for m iterations such that R(A™) <R(Z") then matrix A is said
to be iteratively faster for m iterations (Ref 6:62). Varga's definitions
will be used throughout this paper. The average rate of convergence

and the average error reduction rate are equivalent.

Consistent Ordering. Varga (Ref 6:125) has shown that any ordering

of equations (1) which is "consistent" with the natural ordaring gives
rise to an iteration matrix -]3(4) whose spectral radius is equal to that
for Lw given in equation (10) for the sare G} . Furthermore, Varga
has shown that this spectral radjus is smaller than the spectral radiuc
for any other ordering which is not censistent with the natural ordering,
Hence, for sufficiently large i1 the rste of error vector reduvetion will
bo graantest fur consistent orderiigs.

Let the n x n peint Jacobi matrix B be defined by

B=-D A+l (22)

il

where matrix D is defined in equation (4), and matrix A is defined in

equation (2). Ther the matrix A is consistently ordered if all the

o 4~
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eigenvalues of the matrix
KM =nL+n P -Vy (23)

derived from the matrix B =1 + U, where L and U are respectively
strictly upper and strictly lower triangular matrices, are independent
ef 7), for 7) # 0, provided that A is a p-cyclic matrix (Ref 6:101).
The matrix A is defined as p-cyclic if the matrix B of (22) is weakly
cyclic of index p (= 2) (Ref 6:99). The matrix B is weakly cyclic of
index p (Ref 6:39) if there exists an n x n permutation matrix P such

that _@T is of the form

F—o 0 » e o 0 bi'p
b2,1 0 0 0
0 0 0
PET = [} b3'2\ [ ]
L_(-) 0 « e+ By 0__, (24)

The eigenvalues of the point successive overrelaxation iteration
matrix _l_._.«w derived from a consistently ordered p-cyelic matrix A
ars related to the eigenvaluss of the associated Jacobl matrix B by

(A+ w=-1P= N P IThe (25)

where )\ is a nonzero eigenvalue of L'O.) » (W is the relsxation factor,
&nd [ is an eigenvalue of B (Ref 6:106). That such a relationship
exists is itself interesting, but its importance lies in the fact that
knowledge of the sigenvalues of the matrix B allows determination of
the eigenvalues of . _]:,w for a consistent ordering.

Directed Graph. Fortunately, it is not necessary to apply the
definition directly to determine whether an ordering is consistent.
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It can be shown (Ref 6:121) that an
ordering is consistent if it leads ;
to a matrix B whose directed graph "

of type 2 has an equal number of

major and minor paths on every i

—

closed path. A directed graph of

type 2 for the matrix B = (by,4)

1s constructed so that if by #0
then a path from node Py to the Fig. 1 Type 2
Directed Graph
node Pj is drawn and denoted by a
double~arrow (see Fig. 1) only if j > 1; otherwise, a single-arrowed
path is drawn. The former paths are called major paths; the other
paths are called minor paths. It is also possible to use this graph
to determine when the matrix A is p-cyclic; or equivalently, when the
peint Jacobi matrix B is weakly oyclic of index p (Ref 6:100). If the
greatest common divisor of the lengths of closed paths of 'I;ho graph 1is
p then tho matrix B 1s weakly éyolic of index p, where the length of a

path is defined as the number of nodes reached in traversing the path.

Optimum Relsxation Factor. As stated previously the spectral
radius of the iteration matrix ]_: w depends on the choice of the relax-
ation factor (W, as well as the ordering of equations (1). Ostrowsk’
has shown that the S.0.R. iterative method is convergent for all
such that 0 < W <2 (Ref 6:77). The optimum (U, in the sense that
p( L)) is minimized, can be related to the largest of the eigen-
values of the matrix B of equation (22), for the special case p = 2, as

Wy = 2 (26)
1 +§7 1 -pﬂgf

where W . denotes the optimum (W (Ref 6:110).

10
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Thus, for 2-oyclic matrices, the problem of finding the ordering
ard relagxation factor which ylelds the greatest rate of error vector
reduction in the 1limit as m ——= oo has been reduced theoretically to
choosing any consistent ordering and finding the largest eigenvalue
of the assoclated point Jacobl matrix B, The theory still allows for
the possibility, however, that the average rats of oconvergence may be
different for different consistent orderings, and hence, that the
approach to asymptotic convergence may differ between consistent order-
ings. Also, the projection of the initial error vector onto the
dominant eigenvector of the itevation matrix, expressed as the quantity |
24 in equation (20), may be different for different orderings even if
all are consistent. The extent to which this may be of practical
importance has been examined in this study by applying the point suc-
cessive overrelaxation iterative method to the finite difference

approximations tc elliptic and parabolic partial differential equations.

Difference Equations
To derive these difference equations consider the generel sscond

order, linear, partlal differentlial equaticn

Aazuﬁ‘-&vB O%u +cA%u +D O +E Qu +Fu=30
S Oxdy O Ox dy (27)

where A, B, ... , G are constants or function of x and y only. This
equation 1s classified as elllptie, parasbolic, or hyperbolic in a
domain of the Xy plane as the values of the function B2 - 4L A C are
negative, zero, or positive, respectfuily, throughout the domain.

Equations of the hyperbolic type wers not considered in this study.

1
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laplace's Equation. ILaplace's squation is an exsmple of the

elliptic type, and this equation was chosen for study Locause the
elienvalues of the iteration matrix of tlie associated difference
equations can be found theoretically. This allows precise determina-
tion of the optimum overrelaxation factor prior to actual solution of
the difference equations.

To derive a finite difference approximation to Laplace's equation

% u (x,y) +9%u (x,3) =0
3 = d ¥ (28)

subdivide the x-y plane into sets of equal rectangles of sides
8:: = h, 8 y = k, as shown in Fig. 2, and let the coordinates (x,y)

of a representative mesh point p be

x = ih, y = jk (29)

where 1 and j are integers (Ref 5:7).

y 4 |

i,j+1
K ) plih,ik)

i-1:j ':J i'1lj

T -1
K
R -
Oj+—nh . in X

Fig., 2 Sample Mesh

i2
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Denote the value of u at p by J
Vs u( k)= Y4 (30)

Expand the fumetion u(x,y) in the x direction about the point X, in a |

Taylor's expansion as

alxy * h,yp) = ulxp,y,) +h QU +4 17 __@_3_}2:
X 1XpeIp Q =2 [xpevp ;

+ 1y Qv +

6 o x> XpoJp (31)

Addition of the expansions for u(xp + h,yp) and u(xp = h,yp) gives

u x.p + h.yp) + ‘ll(x-p - hoYp) = 2“"‘])037;;) + hz _@..2_.‘.‘.
9 x? Xpo¥p
+ o(n%) (32)

where O(hu) ienotes terms containing fourin and higher powers of h.
Assuming that these terms are negligible compared with the lower
powers of h, it follows that

a 2 u - u(xp + h,yP) - zu(xppyp) + u(xp - hlyp)
O x? Xpe Ty h? (33)

In terms of the notation introduced in equation (29) this can be

expressed as
% u zuBi + 1)h,jk:' - Zu[ih,Jlg + u[(i - 1)h.:jk]
x P h2 T
or
2

u
ox?

=W ,4 - 20 4 +ugg,g
1,3 We

13
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The derivation for a2 v/ O 32 is similar and gives

d%u =g g0 - 20y gty gy
A¥? | 1.3 i (36)

Both equations (35) and (36) are approximations to the derivatives,
and are called finite diffeirence approximations. The magnitude of
the error introduced by these equations is reduced as the mesh sie>
is decreased.
Substituting the expressions for the derivatives, equations (35)
and (36), gives the following approximation tc equation (28), Laplace's

equation,

Wag,5 = 2,5 YWy, + WM - 20,5ty g =0
h2 K2 (37)

Assuming for simplicity of analysis that the mesh spacings are
taken equal in the x and y directions, that 1is, that h = k, equation

(37) reduces to

bug - (ugag g Fusg, g+ 0y g0 YUy 5) =0 (38)

for each mesh point. This expression is called a five-point formula
aince each mesh point (xj,yj) is coupled to at most four other adja-
cent mesh pcints. This system of linear equations can be written

Au=k (39)

where the column vector k contains the values of the function u

specified on the boundaries of a rectangular region in the xy plane.

14
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The derivation leading to equation (39) shows that & is a real
symuetric matrix with positive diagonsl entries and non-positive off-
disgonal entries. Moreover, it can be shown that A is irreducibly
diagonally dominant, so that A is positive definite (Ref 6:187).

This implies that _4_"1 > 0, where 0 is the null matrix (Ref 6:85).

The associated point Jacobi matrix B, defined by equation (22),
caii be shown to be a non-negative, irreducible cyclic matrix of index
2 with real eigenvalues, and with P (B) <1 (Ref 6:188).

Since all of the diagomal entries of the matrix A are 4, the

point Jacobi matrix B assocliated with A can be expressed simply as
B=I1-4 (40)

All the eigenvalues and eigenvectors of the matrix B can be obtained
explicitly for the finite difference approximation to Laplace's
oquation in a rectangle. Since B i1s non-negative and irreducible,
it has a unique positive eigenvector with eigenvalue P (B), which

for a unit square is given by

p(p_) = cos (hTT) (Ref 6:203)

For the point successive overrelaxation iterative method the
optimum () can thus be written, by equation (26), as

2 2

w = =
° 1+V1-p<(® 1+sin (bTT)

for all consistent orderings.
Heat Equation. The derivation of the five point finite differ-

ance approximation to the diffusion equation of transient heat transfer
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is similar to that for Laplace’s equation. The mesh spacings and |

notation defined in equation (30) and illustrated in Fig. 2 are again ,

adopted. |
In two dimensions the heat equation for an isotropic, home-

goneocus material can be written as

aU=a _@204- 820 +
Dt ox2 Oy B u3)

where
U(x,y,t) is the temperature,
Q 1is the thermal diffusivity, and
B depends on the rate of heat generation, the denmsity of
the material, and the heat capacity.
It can be seen that the steady state heat equation with no heat gener-
ation reduces to Laplace's equation, while the transient heat equation

is parabolic.

With the assumption of mniform mesh spacing, equal to h, the
pecond partials of U with respect to x and y at *ime t + /A t can be
veplaced with finite differences similar to equatioms (35) and (36)

while the first partial of U with respect to t can be found from the

Taylor's expansion

U(xpe¥pet) = U(xpe¥pet + A t) - At DU

I
4
!
;
1
i

at xpn?pot"" A t
+3#(At)2 D2 e
ot xp.yp.t + At (44)

Assuming that higher powers of /\ t can be neglected, this becomes
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Q U ’ = U(xp:ont + A t) - U(xpoypot)
Jt|xppit + Ot At s)

Using these finite difference equations at time t + At, equation (43)

can be expressed as

U(dodatt D) = U, 00t) = o U(aH, 4,6+ D) + U(-1 t+ A\t

At h
+ UM e+ Qt) + U@, 31,4+ D)
h2

-4Q U(1,3,t+A0) + B
h? (46)

Introducing the notation r = QL At/h? this equation becomes

(1 +4r) U(1,3,t+At) = » [U(iﬂ.j,t-!- At) +0(i-1,5,t+A t)
+ UL, 34, t+ At) + U(i..‘j-i.t-i-At)J
+ U(4,3J,t) + B At (47)

or

U(4,3,t+ At) = » [U(iﬂ..‘l.t"-At) + U(1-1,3,t+ At)

1y
+ U1, 31,0+ D\ t) + U(i.j—i.t+At)]
+ 1 [u3,3.0)+[ At
1+ [ '8 ] (48)

This system of lincar equations can be written
AT=X (45)

where X includes the given boundary and initial conditions as well as
the heat generation rate. Again, as for Laplace's equation, A is

irreducibly dilagonally dominant, positive definite, and thus _4"1 > 0.

17
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The associated point Jacobl matrix B is & non-negative, irreducible
cyclic matrix of index 2 with real eigenvalues, and with PO (B) <1,
The eigenvalues of the matrix B, however, cannot be determined
explicitly for this equztion. Thus' the spectral radius p (_Q) rust
be estimated, or the optimum () determined experimentally, for a

given problem.

Ordering
The standard method of ordering of the difference equations,

such as equation (38), for solution by an iterative method can be
j1lustrated for a small sample mesh, as shown in Fig. 3. The node
(1 =1, jJ =1) is assigned the first position in the ordering, the

node (1,2) the second, and

(1,3) the third. The
4 +h—+
"scan" 1s then continued 1
h
in a similar manner for 3 $
7 8 9
the row 1 = 2 giving node
i 2
(2,1) the fourth position 4 5 6
in the ordering, node (2,2) 1 - 5 .
the fifth and so on
throughout the mesh, If 0 ! 2 3 4
J
each node within the mesk

is assigned a number as Fig. 3 Mesh Numbering

shovm in Fig. 3, the starndard ordering may be expressed as [1,2.3,
Y, 5.6.7,8,9] , where the first position within the brackets design-
ates which point is to be solved first, the second position designates

which is to be solved second and so on.

18
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With this notation a different ordering, called the even-odd
scan, can be exprossed [2.4.6,8.1.3.5.?.9] o Again, the numbers
within the brackets denote the points e labled in Fig., 3, while the
positions within the brackets denote the order in which the points
are taken for solution, with the first position first, the second,
second, and so on. When the point occupying the last position is
solved for, the iteration is complete., The ordering is also called
the "scan'.

The definition of a consistsnt ordering can now be illustrated
for the two scans defined above. Teke, for example, the finite diff-
srence approximation to Laplace's oqﬁation in a square. The mesh
and point numberings shown in Fig. 3 will be used. Equation (38) can
be written in matrix notation as '

Au=k (50)

where the column vector k contains the values of the funotion u
specified on the boundaries of the mssh. The matrix A is given by

_1-%0-40000-6_
-+ 1 -4 0 -4 0 0 0 O
0o -4 1 0 0 -+ 0 0 O
-+ 0 0 1 -4 0 - 0 O
A= 0 -4 0 -4 1 -4 0 <4 O
0 0 -4 0 -4 1 0 0 -4
0 0 0 -4 0 0 1 - 0
0 0 0 0 -4 0 -t 1 -¢
0 0 0 0 0 - 0 -+ 1
19
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The associated Jacobi matrix B is defined by

-1

B=1-D"A (52)
ard is given by
o 1 0 1 0 0 0 0 O
1 0 1 0 1 0 0 0 O
0o 1 0 o 0 i 0 o0 O
1 0 0 0 1 0 1 0 O
B=4 (0 12 0 & 0 1 0 1 ¢
0o 0o 1 0 1 0 O 0.1
o 0 0 &t 0 0 0 1 o0
6 0 0 0 1 0 1 0 1
| 000 0 0 1 0 1 O] (53)

To determine whether an ordering is consistent, the matrix B is
transformed by the permutation matrix P corresponding to the ordering,
by a similarity transformation of the form _l_"_B_P-1 = ‘P_B_PT (Ref 3:244),
The permutation matrix P corresponding to the standard ordering
[1 ,2.3.’4.5.6,7,8,9] is simply P = I and hence the transformation
yields tne matrix B. Now, the ordering is consistent 1f the directed
graph of type 2 of the matrix f_E_l_’T has an equal number of major and
minor paths. The directed graph of type 2 for matrix B of equation
(53) 18 shown in Fig. 4.

Many useful properties can be deduced from this graph. The graph
is "strongly comnected", that is, there is a path (with arrows) from

each point to every other point. Hence the matrix B (and therefore A)

20
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Fig. 4 Directed Graph of Type 2
for the Standard Scan

is irreducible (Ref 6:20). The greatest common divisor of closed paths
is 2, hence “he metrix B is weakly cyclic of index 2 (Ref 6:101). By
definition, then, the matrix A is 2-cyclic (Ref 6:99). The number of
major {2-arrowed) and minor (l-arrowed) paths on every closed path is
equal; therefore, the matrix B is consistently ordered. Since the same
conclusions hold for EIBT, the standard scan is consistent.

The permutation matrix P for the even-odd scan [2,4.6.8,1,3,5.7.9]

is given by

(54)

o

(]
'OOOOHOOOOI
OCO0OO0OO0COO0OOO
COOROOCCOO
[eBoRoleNoRaNoR JNe)
OCHOO0O0O0O0O0O
OCO0OO0O0OO0COrrOO
Or 0000000
OCO0O0O0OFrOO0O
IP‘OOOOOOOOI

The directed graph of type 2 for _EB_ET. where B is given by equation
(53), is shown in Fig. 5. The number of major and minor paths on each

21




GSP/PH/68~5 1

Fig. 5 Directed Graph of Type 2
for the Even-Odd Scan

closed path is equal, and therefore the even-odd scan is consistent.

22
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III.. Experimental Investigation and Results

In this investigation the standard scan and the even-odd scan
were programmed in Fortran IV for execution on an 1BM 7094 computer.
: The scans were applied to the five point finite difference approxima-
-} tions to Laplace's equation and the heat equation in a square with a

uniform mesh spacing in both dirsctions. The method of point

successive overrelaxation was used.

These two scans were compared to each other and to a method devel-
f oped and tested by Cudahy in 1965 (Ref 2). Cudahy applied his method,

| which was designed to accelerate the convergence of the standard point
successive overrelaxation iterative method, to the five point finite

; difference approximation to the diffusion equation of transient heat
transfer, using point successive overrelaxation. He compared his method

to the standard scan and found that his method was iteratively faster,

Ty et e e

the per cent difference depernding on wvarious factors, including the
time step and heat generation rate. lLie did not program the even-odd
scan.

One of the first objectives'of the present study was to explain,
from an examination of the theory of point successive overrelsxation,

why Cudahy's method was faster than the standard scan. This proved

L BRI Y 8 g o M S S T b Tt

to be somewhat difficult, howuver, since the theory that has been

developed for point successive overrelaxation deals with cyelic,

- npmae

stationary iterations, while Cudahy's method strictly speaking is

: y neither cyeclic nor stiatiouary.
An iterative procedure is said to be cyclic when the ordering is

repeated, without change, on each iteration. The method developed by

23
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Cudahy employs four different orderings (each of which, considered by
itself, is consistent). These four scans are applied repetitively, in
the same order, until the process convergr . to a predetermined limit.
The four orderings can be illustrated in terms of the mesh points
labelad in Fig. 3. The first ordering is [1.2,3.7.8.9.4.5.6] : the
second ordering is [3,2,1.9,8.7.6.5.4] ; the third ordering is
[1,#,7,3,6,9,2,5.8] ; the fourth ordering is [7,’4-,1.9.6.3p3s5o2] .
The ecenter row or column ls always solved last.

An iterative process is termed stationary if the relaxation
factor applied is independent of the iteration number. In his method,
Cudahy applied two different relaxation factors on each iteration.
Although the two relaxation factors are the same on each subsequent
iteration, the use of four different orderings makes the relaxation
factor applied to certain points of the mesh a function of the
iteration number, and hence the method is non-stationary.

One of the difficulties that this presents can be seen by
examining the assumptions used in the error vector analysis leading to
equation (20) of chapter II, It was assumed there that the same itera-
tion matrix l._uw of equation (10) was applied on each iteration, that
is, that the method was cyclic and stationary. For Cudahy's method
there are four different iteration matrices, which do not have the same
set of eigenvectors, and thus equation (20) does not apply.

Another difficulty introduced by the use of four iteration
matrices is encountered in predicting the asymptotic rate of conver-
gence. Tho rate is affected by a coupling between the iteration
matrices which cannot be exactly knmown without knowledge of the full

range of eigenvalues and eigenvectors of each nalrix. Determination
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of the eigenvaluer 1d eigenvectors of the iteration matrices, which

is a formidabls ¢ o.em in itself, is complicatied by th- fact that

explicit representation of i e iteration matrices requires, for a 51

by 51 mesh, the direct inversion of a 2401 by 2401 matrix for each

iteration matrix. This type of problem is avoided in the theory of

point successive overrelaxation by equation (25) which specifies the

eigenvalues of the S.0.R. iteration matrix in terms of the sigenvslues ;

of the associated Jacobli matrix B, which can be explicitly represented |

from equation (22). i
Since the theory provides no immediate answer for these problems,

the computer was used to compare Cudahy’s method experimentally with

the standard and even-odd scans.

Laplace's Equation
The finite difference approximation to Laplace’s equation, for a

uniform mesh spacing, given by equation (38), can be sclved by the
method of point successi.e overrelaxation derived in chapter II. The

point equation corresponding to L » matrix equation (9) is given by
W) = (- W) + @ [ul +1,3) +ul - 1,3)
4
+u(i,j +1) +u(4,] - 1)] (55)

where the (m + 1)'s and (m)'s have been suppressed to allow this
equation to represent any ordering. The values of the fun .on u
within the brackets are to be taken from the present or preceding
iteration, depending on the crdering of points for solution.

Equation (55) is applied at each point within the mesh to form a
complete iteration. The magnitude of the change in the valus of u at
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each point is ~ ted as the iteration progresses, and the largest
change is retained, At the end of sach iteration this valus can be
compared to a predetermined number, called the iteration limit. If
the largest of the chsnges in magnitude of the fimction u, dencted Y ,
is less than the iteration limit the process may be said to have con-
verged to that iteration limit. This is an easily applied convergence
criteria.

In this study the difference magnitude °Y was not tested at the
end of each iteration to determine convergence, but rather a specified
number of iterations were performed with the value of Y printed out
for each iteration. If an iteration 1imit is later specified then the
first iteration where Y is less than the specified limit will be the
iteration at which the process can be said to have converged.

The standard and even-odd scans where compared to Cudahy's method
for a 31 by 31 mesh where the value u = 1000 was specifisd on the
boundaries, and the initial estimate for all points within the mesh
was u = 0. The results of tha! omparison are shown in Table 1 for
various iteration limits. It was stated previously that Cudahy's
methed empioys two relaxation factors. The second relaxation factor
is applied only to the points in the last row or column of the iteration
and is given in terms of the () 1listed in Table 1 by

W' = W +ir) (Ref 2:25)
Wr +1 +4r (56)
vhere r = O A t, which gives for Laplace's equation ( At — o0)
h2
W' = LW
b+ (57)
26
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Table 1

Number of Iterations Required for Various Iteration
Linits for a 31 x 31 Mesh Solving Laplace's Equation

Iterations

Tteration | Standard | Even-0dd
Limit Scan Secan

Cudahy's Methocl

w=1.80 =1.85 |W=1,90 |W=1.95

5 5 9 o
3 27 31 67
65 55 64 9
99 82 75 137

133 110 o4 191

167 138 128 | 232

202 166 144 288

27
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It can be seen from Table 1 that Cudahy's method is initially itera-

tively faster than eilther of the other two scans. A4s the iteration

limit becomes finer, however, Cudahy's method becomes iteratively .
slower. Thus it is likely that the asymptotic rate of convergence of

Cudahy's method is less than that for a consistent, cyclic stationary

iteration. This assertion cannot be proven experimentally, of course,
since the asymptotic rate of convergemce is realized only as the

number of iterations approaches infinity.
k
Since the stendard scan and the aven-odd scan are consistent, the |

optimum overrelaxation factor can de determined precisely from equation !
(42). The optimum () was used to obtain the data shown in Table 1 for |
these scans. It is interesting to note that the even-odd scen is iter- i
atively faster than the stemxiard scan for all iteration limits showm. ‘

Since both scans have the same asymptotic rate of convergence, the even-

odd scan can be axpected to be iteratively faster than the standard scan
for all iteration limits, no matter how fine.

) Figs. 6 and 7 show a segment of the data from which Table 1 was

¢ constructed, for the standard and e¢ven-odd scans. The difference

magnitude 'y » defined as

(@¥) _ () | 124, 48

Y mmax | w0 -y (58)

(s

where N is the number of mesh spacings, is plotted wersus the iteration

number. For a sufficiently large number of iterations the even-odd scan

is iteratively faster than the standard scan by an amount which is repre-

sented by a fixed number of iterations at a convergence rate aporox- .
imately equal to the asymptotic rate of convergence. Since the

difference between the scans is a fixed number of iterations, the per
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cent difference is a function of the number of iterations and will
approach zero as the number of iterations approaches infinity.

Fig. 8 shows a comparison between the even-odd scan at optimum
& and Cudahy's method at W = 1.85. It can be seen that Cudahy's
method rapidly approaches its asymptotic rate of convergence, which
is not as great as that for the even-odd scan. The somewhat erratic
bshavior of the difference magnitude ')/ for the first few iterations
11lustrates the difficulty in making theoretical uredictions of aver-
age rates of convergence for a relatively small number of iterations.

To detwrmine whether the mesh size has an important effect on the
relativz speed between the standard and even-odd scans, the mesh size
was varied from a 10 by 10 to a 70 by 70. Ccmputer time limitations
precluded inclusion of larger mesh sizes. The results of that compar-
ison are shown in Table 2. Again the optimum () was calculated from
equation (42) and used in these runs., The iteration limit used repre-
sents a reduction in the length of the error vector by a factor of

11. or eleven orders of magnitude.

approximately 10~
The data in Table 2 show that the number of iterations difference
between the two scans incrsases as the mesh spacing decreases, and that
the per cent difference, for the same iteration limit, remains approx-
imgtely the same. This indicates that the relative speed difference
is independent of mesh spacing.
Figs. 9 and 10 show the difference magnitude ')/ as a function of
the iteration number for a 40 by 40 mesh. It can be seen that the
same general features are present here as were present for the 31 by 31
mesh in Figs. 6 and 7. The only significant change is the difference

in asymptotic rate of convergence, the slope of the curve for large

iteration numbers.
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Number of
Limit of 107

Table 2

terations Required at an Iteration

for Solution of Laplace's Equation
with Various Mesh Sizes for a Unit Square

Iterations
Number Per Cent
Standard Even~0Odd | Difference| Difference
Sean Sean
48 L5 3 6.3%
98 93 5 5.1%
148 139 9 6.1%
195 186 9 b,6%
2hh 231 13 5.3%
293 277 16 5.4%
343 323 20 5.8%
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Haat Equation
The point equation for the finite difference approximation to

the heat equation, corresponding to the matrix equation (9), is given

by

UL, 3t At) = (-5, 0+ A + @ [ _ T [u(as, 3,6+ At)
1

+ u(1-1 Jot+ AAt) + U(3, 34, t+At) +U(4,3-1, t+At)]

I-U(*Jt)*B At]}

1+4r (59)

where the (m + 1)'s and (m)'s have been suppressed to allow this
equation to represent any ordering.

Solutions of equation (59) by peint su:  wive overrelaxation were
obtained using the standard and even-odd scans and Cudahy's method.

The problem selected was similar to that for Laplace's equation. The
boundary values were set at U = 1000, the thermal diffusivity QL was
taken as Q. = 1, and there was no heat generation ( 18 = 0), This
corresponds to the problem for which Cudahy relorted the greatest
improvement in rat< of convergence for his method compared to the
st.andard scan. The initisl values inside the mesh were U = O for each
mesh point. A uniformly spaced 51 by 51 mesh was employed.

Takles 3, 4, and 5 show the number of iterations required for
various iteration limits for: At = 0.01, 0.1, and 0.5 respectively.
Thase rasults correspond closely with those given by Cudahy (Ref 2)
for “is method and the standard scan up to an iteration limit of 10-1.
The present data have been a.+ended to much finer iteration limits,
however, ir order <o indicate ths asymptotic behavicr of the methods,

The even-cdd scan, which was Tound o be iteratively faster than the
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Table 3

Number of Iterations Required for Various Iteration Limits for
a 51 x 51 Mesh Sclving the Heat Equation with A\t = 0.01

Iterations

Iteration Standard Even-0dd Cudahy's

Limit Scan Scan Method
W= 1.25 W = 1,25 W =1.35

10% 3 3 3
1ol 6 5 4
10° 9 7 6
1071 12 8 8
1072 15 10 10
10-3 18 11 12
1074 21 13 14
10~ 25 15 16
1076 28 16 18
10~7 31 18 21
10~8 35 20 23
1077 38 21 25
10~10 ] 23 28
10~11 s 25 31
10712 48 26 33
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Table 4

sumber of Iterations Required for Various Iteration Limits for

a 51 x 51 Mesh Solving the Heat Equation with

At = 0.1

Iterations
Iteration | Standard | Ever-0dd Cudahy's Method
Limit Scan Scn
W=1.64 | W= .64 | W=1.68 | W=1.70 | w=1.72

102 9 ? 4 4 b
10 18 12 7 7 ?
10° 28 17 12 11 11
10”1 38 22 18 17 16
10~2 48 27 25 23 20
107 58 32 32 29 27
107 68 37 39 35 32
1072 78 u2 up 42 41
10~6 89 u7 55 50 53
10~7 100 53 64 60 66
108 102 59 73 70 79
10~7 105 63 81 82 95
10~10 109 68 90 96 108
10-11 112 73 99 108 115
10-12 116 78 111 115 123
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Table 5

Mumber of Iterations Required for Various Iteration Limits for
8 51 x 51 Mesh Solving the Heat Equation with At = 0.5

Iterations -
Iteration Standard Even-0dd Cudahy's
Limit Scan Scan Method
W =1.79 W =1.79 W = 1.85
102 16 12 5
10! 34 22 11
10° 52 31 23
101 69 43 ]
102 90 55 61
10-3 101 67 90
10~¥ 104 79 108
105 112 91 117
10~6 123 103 131
1077 135 115 144
108 148 127 160
10~9 160 | 140 178

39




e N LAELTRFRN T L

GSP/PH/68~5

standard scan for Laplace's equatlion, is seen here to be iteratively
faster for the heat equation as well.

Again, as was the case for Laplace's equation, Cudahy's method
is initially iteratively faster than either of the two consistent,
cyclie, stationary scans, The introduction of the factor At in the
heat equation has the effect of expanding the number of iterations,
in relation to a fixed convergemce criteria, for which Cudahy's method
is faster than the standard scan. Comparing the plots for the standard
scan in Figs, 7 and 10 with the data presented in Table 4, it can be
seen that the sharp drop in the difference magnitude ')’. which for
Laplace's equation occured at an iteration limit of approximately 100,
occurs for a At = 0.1 at an iteration limit of appraximately 10'7.
Cudahy's method is faster than the standard scan so long as comparisons
are confined to this region, and not extended to finer iteration limits.
The even-odd scan, "n the other hand, is not adversely affected by the

transition to a small At.
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IV, Discussion and Conclusions

Consistent Scans

As shown by the tables and figures in chapter III, the even-odd
scan was found to be literatively faster than the standard scan for
all problems tested. This effect can be explained in terms of the
theory presented in chapter II by a consideration of the expansion of
the error vector at the (m)th iteration in terms of the eigenvalues
and elgenvactors of the iteration matrix.

For a sufficiently large number of iterations the error vector

following the (m)th iteration is given by equation (20) as

E(M) =a; A7 o (20)

This condition can be found to be satisfied experimentally when the
ratio of the difference magnitude 7 for *he (m)th iteration to the
difference magnitude ')’ for the (m - 1)t.. ‘“eration is appraximately
equal to the spectrsal radius and when this value is essentially con-
stant for several preceding and several following iterations. For the
problems tested this condition was fourd to apply for all iterations
past the 100th iteration. Expressed another way, )\ ;OO was found to

be much less than )\ :00.
In examining the terms in equation (20) it will be recalled that

the dominant eigenvector ;1 was assumed to be normalized. The largest
eiganvalue >\ 1 is the same, and minimum, for all consistent orderings.
This leaves only the quantity 8y which is the magnitude of the pro-

Jection of the initial error vector E(o) onto the dominant eigenvector,

to .ccount for the observed behavior.

I\




;
‘!
i
)
!

GSP/PH/68-5

From an examination of equation (20) cne would predict that if
the quantity ay were in fact different for two consistent orderings
then the error vector after a sufficient number of iterations would be
greater or less for the one scan as compared to the other by a fraction

equal to the ratio of the two &,'s. Furthermore, one could predict

1
that the magnitude of the error vector for the iteratively slower scan
after m + m' iterations would be equal to that for the faster scan
after m iterations, and that m' would be independerit of m. Referring
to Fig. 10, this is exactly the behavior observed, from which it 1s
ccncluded that the guantity a4, corresponding to the even-odd scan

is less than the a; corresponding to the standard scan. This observa-
tion holds for all the problems tested.

That the a;'s could be different for different consistent scans
is not surprising since, although all of the eigenvalues are the same,
the eigenvectors are known to be, in general, different for different
scans (Ref 9:403), and hence the projection of the initial error vector
onto the dominant eigenvector will in general be differsnt.

The data indicate that the even-odd scan is preferable, in gener-
al, over the standard scan for point successive overrelaxation.' The
time savings achieved will vary with the size of the problem and/or
the iteration 1imit required, and will be reduced asymptotically to
zero as the number of iterations increases toward infinity. The max-
imum savings observed for few iterations was on the order of 15 to
20%. This value is not unreasonable for the savings to be expected
for a small problem (40 x 40 msch) with a required error vector

reduction of three or four orders of magnitude.
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Cudahy's Method

One of the initial objectives of this study was to explain why
Cudahy's method was faster than the standard scan and then to apply
it, or a variation of the principal with block overrelaxation, to
three dimensions. Unfortunately, it was discovered that Cudahy's
method was not in fact asymptotically faster and hence the expansion
to three dimensions was not attempted.

From the data presented in chapter III, Cudahy's method can be
seen to be best suited for the transient heat equation at smalil At.
The iterative speed of his method can be seen from Tables 3, 4, and 5
to be quite favorable when compared to the standard scan and less so
when compared to the even-odd scan. The data in Table 4, for At =
0.1, include the results for Cudahy's method with three different
relaxation factors. It can be sesn for an iteration limit of 10~1
that the highest relaxation factor gives the greatest iterative speed.
For finer convergence criteria, however, the (W corresponding to the
best speed decreases; and hence, the itsrative speed is a function of
the iteration 1limit as well as the relaxation factor.

The method developed by Cudahy was designed to accelerate the
convergence of point successive overrelaxation by scanning the bound-
ary values into the mesh as quickly &s possible. Each of the four
scans employed takes the values from one of the sides of the mesh and
distributes them throughout the entire mesh. It can be seen from Fig.
6§ that this produces an initial rapid convergence, as seems reason-
able, but that the method is eventually iteratively slower than the

consistent scans, due to its slower asymptotic rate of convergencs.
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Block Overrelaxation

Although this present work was confined to point successive
overrelaxation, it is lnown that the method of block successive over-
relaxation is asymptotically faster by approximately 40 per cent
(Ref 6:205).

Much of the theory presented in chapter II for point successive
overrelaxation is also applicable to block overrelaxation. In par-
ticular the definition of and techniques for finding consistent
orderings are identical. It is only necessary to partition the matrix

A of equation (1) in the form

Al,i -‘5-'1,2 ¢ v £‘1.n

%‘2.1 5'2,2 éz.n

>
"

e oo A (60)

én,i An.z “Nn,n

LR

where the diagonal submatrices -‘51,1' 1= i £ N, are square and non-
singular. The associated matrix B is then the block Jacobi matrix B
defined by B = -D™! 4 + I ‘

As a practical matter, the diagonal submatrices of A of equation
(60) must be tridiagonal so that they may be solved directly.

The relevance of the present work to block successive overrelax-
ation is that it indicates that it may be possible to find a corsistent
ordering which 1s iteratively faster than the standard method of line
ovarrelaxation. The theory does not specifically exclude this possibil-
ity; however, the requirement that the submatrices be tridiagonal may

make the search difficult.
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Recommendations

Since the asymptotic rate of convergence for point and block
successive overrelaxation has been shown by Varga to be optimum for
consistent orderings (Ref 6:125), and since this study has indicated
that the iterative speed difference between two consistent orderings
can be significant for small problems, the author feels that further
research into accelerating the rate of convergence could be profitably
directed toward finding that consistent ordering which yields the
greatest initial average rate of convergence.

Extension of the method to three dimensions and testing of
various consisten. scans in that domain should prove worth-~while.

Other iterative methods, such as the alternating~direction
implicit methods and semi-iterative methods, have been developed which
appear to be faster than point successive 6verrelaxation. and in some
cases, block successive overrelaxation. In particular, Varga has
reported that for the model problerﬁ (Laplace's equation in a rectangle)
the alternating-direction implicit methods have produced convergence
rates as much as 38 times as great as for point successive overrelax-
ation (Ref 6:228), Varga shows that these methods derive their speed
primarily from the use of different accelerating parameters on each
iteration (Ref 6:217). A significant disadvantage of these methods
however, in addition to their complexity, is the fact that they are
not rigorously applicable to irregular geometries.

An attempt Was n:a.de during the present study to increase the rate
of convergence for the even-odd scan by the use of non-stationary
iterations by assigning a slightly larger than optimum relaxation

factor to ths even points of the scan and a slizhtly smaller tlan
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optimum factor for the odd points and by decreasing the difference

e e e T

for subsequent iterations, but the method proved teo be initially

divergent and was not investigated further. It may be possible to .
develop a more sophisticated method which would succeed.
Use of the techniques employed by Cudahy, combined with the use
of different relaxation factors on each iteration might lead to
greater rates of convergence, but this procedure is most likely to
succeed as a variation of the alternating-direction implicit methods.
Since Cudahy's method has the ability to gulcily aliminate large

gradients in the approximation to Laplace's equation, it might favor-

ably be combined in an iterative procedure with the even-odd scan,
wherein Cudahy's method is applied initially to smooth out large
gradients, and then the even-odd scan, with its greater asymptotic

rate of convergence, is used to obtain the desired accuracy through- ’ H

out the mesh.
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